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1. INTRODUCTION 

This paper deals with problems of the following kind:  Suppose we wish 

to purchase a certain item.  We will be quoted prices for the item, one at 

a time, and at some point we must stop listening and pay the price we have 

just heard.  When should we stop in order to pay as little as we can? 

The primary motivation for this paper was the desire to sharpen and 

extend some recent results of Stewart (1978), who studied certain of these 

problems from a Bayesian point of view.  In Stewart's model the prices, 

X..,X„,...,X  form, conditionally, a random sample from a uniform distribution 

on an interval  (a,3)  and the end-points have a prior density of the form 

Pk(a,ß|£,u)  = k(k-l)(u-£)       /(ß-a)       ,    -o°<a<£<u<ß<oo;  k > 1 . (1.1) 

These densities were chosen for mathematical convenience.  They are conjugate; 

i.e., the posterior density, say f(a,ß|x1,...,X.),  is of the same form as 

the prior density, namely 

f(a,ß|xi,...,Xj) = pk+j(a,ß|L,Uj) (1.2) 

where 

and 

I.   = min(£,X1,...,X.) (1.3) 

u. = max(u,X.. ,. . . ,X.) . (1.4) 
J       ' 1     3 

In other words the parameters £ and u of the prior density (1.1) 

play the role of the smallest and largest of k previous "pseudo-prices". 

(We shall regard k as an integer in (1.1) although it need not be.)  This 

role is also reflected in the form of the Bayes rules which Stewart derives 

when the loss for accepting the i-th price is either of the following: 



or 

(a)  the Quantile of the price:  (X.-a)/(ß-a) 

(b)  zero or one according as X.  is or is not the "Best Choice" 

which is defined to be min{£,X,,..„,X }. 

(Thenames Quantile Problem or Best Choice Problem will be used whenever we 

are dealing with these losses, whether or not there is a pseudo-observation, 

A.) 

In each problem the Bayes rule — which is the policy (i.e., stopping 

rule based on the prices) that minimizes the Bayes risk — essentially depends 

on the sample size n and the prior density parameter k only through their 

sum, say m = n + k.  It features a "learning period" of the form 

max{i(m),k+l} - k which is the subscript of the earliest price which can 

possibly be accepted.  Beginning with that price, acceptance is based solely 

on the values of the current price,  X.,  of  £.  and u.,  and of the number 
x       l       x 

of prices remaining — up to a maximum of m-2 since the smallest integer 

k for which (1.1) is a probability density is k= 2.  (Exact expressions 

for these Bayes rules are given at the beginning of Section 4.)  Further- 

more, while the risk does decrease with increasing n  (or decreasing k) 

until k+1 £ i(m),  it then remains constant for all larger n  (or smaller 

k). 

If i(m)  is at least 3, then setting k= 0 in the above policy and 

eliminating the pseudo-prices  £  and u  from (1.3) and (1.4) yields a 

perfectly legitimate stopping rule.  In Section 4 we shall exploit the fact 

that the losses (a) and (b) are invariant under location and scale trans- 

formations to show that this policy is minimax for the family of all uniform 

distributions among all stopping rules based on m prices and that its risk 



is a constant equal to the Bayes risk of the corresponding Bayes rule 

with k=2.  Since Stewart's results shows that  i(m) :> 3  for m ^ 6  in 

the Quantile Problem and for m ^ 5  in the Best Choice Problem, this very 

nearly settles the minimax problem.  And the minimax policy for the few 

remaining values of m will also be given in Section 4.  The results of 

Section 4 utilize a general framework developed in Section 3 which applies 

to all bounded losses which share the invariance property of the Best Choice 

and Quantile Problem losses.  Section 3, we think, constitutes an especially 

interesting "concrete" application of the invariance ideas commonly referred 

to as "Hunt-Stein Theorems". 

Stewart's goal was to find optimal risks as well as optimal rules in 

order to assess the penalties which must be incurred for not knowing the actual 

distribution of the prices, as well as the rewards which may be received for 

being able to actually "measure" the prices rather than to know only the 

relative rank of each current price among those heard so far.  (The relative 

rank of X.  among the first i prices is defined to be j  if X.  is j-th 

smallest among X, ,X„,...,X..  And a relative rank rule, when there are no 

pseudo-prices, is a policy in which the decision of whether or not to accept 

a given price is based solely on how many prices have been heard so far and 

what is the relative rank of the current price among them.)  By considering 

only uniformly distributed prices Stewart could invoke results of Gilbert 

and Mosteller (1966) and Chow et al. (1964) which give the optimal rules 

and risks in the two extreme cases.  These are reviewed in Section 2. 

Stewart showed that in the Best Choice problem there is no reward at 

all for being able to observe the X.'s themselves rather than just their 

relative ranks.  Indeed in the Bayes Rule the decision of whether or not 

to accept the i-th price is based solely on i and on whether or not 



X. = min{£,X.. ,X ,. .. ,X.}.  In the Quantile Problem, on the other hand, 

there is such a reward.  Stewart's numerical results, together with the 

previously known limits reviewed in Section 2, suggested that for large 

n the risks of the best relative rank rule, the Bayes rule, and the optimal 

rule when the distribution is known, are in approximately the ratio 3.87 to 

3.48 to 2.  So, of the difference between the two extreme values, about 79% 

is due to uncertainty about which uniform distribution is being sampled from 

and 21% to suppression of information when we use only relative ranks rather 

than the prices themselves. 

That exactly the same results hold for minimax risks is virtually im- 

plied by the previously remarked intimate relationship between the Bayes 

rules and the minimax rules.  (The one small loose end is verifying that 

the minimax policy in the Best Choice Problem is a relative rank rule for 

m £ 5 as well as for m > 5.) 

For the Quantile Problem, Theorem 5.1 confirms the limit for the risks 

suggested by Stewart's numerical results.  Further insight is provided by 

the monotonicity results of Section 6.  And the asymptotic performance of 

an appealing sequence of simplified policies is also evaluated in Section 5. 



2. UPPER AND LOWER BOUNDS FOR RISKS 

2.1. Best Policies When the Distribution is Known 

Solutions to both the Quantile Problem and the Best Choice Problem 

when the end-points a and  ß are known can be found in Gilbert and 

Mosteller (1966).  They are as follows: 

For the Quantile Problem, when the sample size is  n  the optimal policy 

is to stop as soon as 

(x^cO/Cß-a) ^ vn_i . (2.1) 

Here X.  denotes the i-th price we will hear and the v, 's  are a single 

decreasing sequence of constants (the same for all sample sizes, n) which are 

computed recursively from the formula 

vo = 1» vk+i 
= vk(1-V2)- (2'2) 

The v 's play a dual role in this problem:  v  is also the risk when the 
K. n 

sample size is n and the optimal policy is used.  And, as was shown by 

Gilbert and Mosteller, 

nv -* 2 as n -> <» . (2.3) 
n 

Thus if n  is large the expected price to be paid — expressed as a quantile 

of the underlying price distribution, is about  2/n,  which is just about twice 

what we would expect to pay if we could hear all n prices and then choose 

the smallest one. 

For the Best Choice Problem, when the sample size is n  the optimal 

policy is to stop as soon as X. = min{X,,...,X.}  and 



(X.-a)/(ß-a) £ d _. (2.4) 

where d„ = 1  and, for k 5 1,  d,  satisfies 
0 k 

(l-dk)
k = l    j"1 (k) (l-dk)

k-jd^. (2.5) 
j=l 

The  d, 's  are decreasing in k,  and writing 

dk = ck/(k+ck) , (2.6) 

it follows from (2.5) and the dominated convergence theorem that 

ck -+ c = .804352 (2.7) 

where  c  is the solution to 

I     c^/j.'j = 1. (2.8) 

The probability of correctly choosing the lowest price with the optimal policy 

was evaluated by Gilbert and Mosteller for various sample sizes.  This optimal 

probability of best choice is a decreasing function of sample size, with limit- 

ing value 

-C    ,    C    ,x  f    -1 -CX e - (ec-c-l) / x e CXdx ~ .580164 (2.9) 
1 

with  c  as in (2.8).  The value .580164 was obtained by numerical methods by 

Gilbert and Mosteller.  The actual algebraic expression for the limit is 

shown in Appendix A of this paper to be equal to 



P(Z(1-T) < c < (Z+Z'/T) (1-TT')) (2.10) 

where  Z, Z', T,  and T'  are mutually independent random variables with Z 

and Z'  each exponentially distributed with parameter one, and T and T' 

each uniformly distributed on the interval  (0,1).  A proof that (2.10) is 

indeed the limiting optimal probability of best choice is sketched in Appendix 

A. 

(These results for the Best Choice Problem apply not only to uniform 

distributions but also to any known continuous distribution F,  with (2.4) 

replaced by  *'F(X.) £ d _."•) 

2.2 Best Relative Rank Rules 

A familiar linearity property of uniform distributions — that the mean 

of the i-th order statistic of a sample of size n from a uniform distribution 

on  (a,ß)  is a+ i(ß-a)/(n+1) — yields the solution to the Quantile Problem 

in the restricted class of relative rank rules directly from the result of 

Chow et al. (1964).  This linearity property implies that for any relative 

rank rule the expected quantile of the price accepted by the rule is just 

(n+1)    times the expected rank of that price.  Chow et al. in effect found 

that for any continuous distribution of prices the minimal expected rank 

attainable by a relative rank rule, say C ,  satisfies 

°° 1/U+l) 
C f    I     (l+2j X)       z  3.8695. 
n    i n=l 

and is attained by a single stopping rule for each n,  regardless of the dis- 

tribution.  Hence, for uniform distributions this same policy minimizes the 

expected quantile, and the minima, say  r , satisfy 
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nr n = nC /(n+1) f   z  3.8695 . (2.11) 

The Best Choice Problem with only relative rank rules permitted is an 

elementary one found in many places including Gilbert and Mosteller (1966). 

For any continuous distribution of prices the optimal policy when there are 

n _ available prices is to stop as soon as X.  is the lowest price heard so 

far and i ^ i(n)  where 

n-1   _ n-1 
I        i  < 1 <    I i  . (2.12) 

i=i(n) i=i(n)-l 

This policy has probability p  of selecting the lowest of all n prices where 

n-1 
P =   y    i(n)/ni \  e      z   .3679 . (2.13) 
n  i=i(n)-l        * 

2.3 Other Best Choice Problems 

Recently Petruccelli (1979) has studied the Best Choice Problem where the 

price distribution belongs to the restricted family of just those uniform dis- 

tributions with  ß-a=l, and found that the best relative rank rule is not 

minimax, in contrast to the result for the full class of all uniform dis- 

tributions.  By adapting the method used to get (2.10) Petruccelli found that 

the asymptotic minimax probability of best choice is ~ .43517. 

Petruccelli also gives sufficient conditions under which the asymptotic 

minimax best choice probability achieves the value in (2.9), an example of 

which is the family of all normal distributions. 
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3. INVARIANCE AND MINIMAXITY 

3.1.  Invariance of the Quantile and Best Choice Problems 

A property shared by both the Quantile Problem and the Best Choice Problem 

is that their loss functions are invariant under location and scale transforma- 

tions.  What this means is the following:  Let W.  (x;a,v)  denote the loss x  ~   ' 

for accepting the i-th of the n available prices when 

x = (,x, ,. • • »x ) 
~    X     n 

is the vector of prices and a and a + Y are tne end-points of the underlying 

uniform distribution. We call the loss invariant if for each i = l,2,...,n 

w£n)(x;a,Y) =  w£n)((x-a)/T) (3.1) 

where we use the abbreviations 

(x-a) /y  = ((x-^a) /y»• • •»(xn-a) /y) 

and 

a + bx =  (a+bx-,...,a+bx ) . 
~       X        n 

In the Quantile Problem 

r(n) W ± (x;a,y) = (x±-a)/y, (3.2) 

while in the Best Choice Problem 

W^ J(x;a,y)  = x if xi = min^,... ,xn> 

= 0 otherwise, 

or, equivalently, 
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W.  (X;OI,Y) = 1 if  (x.-a)/y = min   . {(x -a)/y} 

= 0  otherwise. 

Both of these loss functions are clearly invariant.  (In addition, they are 

bounded by one and, for  i ^ 3,  symmetric in x..  and x„,  properties which 

will be needed later.) 

When the loss is invariant, the risk of a stopping rule T,  say p (a,y)» 

becomes 

PT(a,Y) = EajYw^
n)((X-a)/Y) 

a+Y    a+Y n  , . n 
= /    ... J      I w£n>((ra>/Y)i{x.T(x)=i}Y"n T\ dx 

a     a  i=l 1 l;,u~; 1J   i=l  1 

n      .  . 
= I    E. lW:

n;(X)Ij- , , v. .-, . (3.4) .^  0,1 l  ~ {x(a+YX)=x} 

The last equality follows from a change of variables in the integral. 

(Note that although we write T = x(x,,...,x ),  the fact that x is a 

stopping rule means that  {x:x(x) = i} depends only on the first  i coordinate 

of x.) 

3.2. Minimaxity of Best Invariant Rules 

whenever the loss function is invariant under some group of transforma- 

tions, it is natural to look for a minimax stopping rule within the class of 

invariant rules.  In this case an invariant stopping rule x  is one which 

satisfies 

x(a + bx) =  x(x) (3.5) 

for all real x,,...,x  and a  and all positive b.  For example, any 

policy of the following form is invariant: 
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T(X1,...,Xn) = min{j 5±n: (X -L.)/(U.-L.) £c.} , (3.6) 

where i is some integer with 2 £ i £ n, 

L = min{X1,...,X.} , (3.7) 

U\ = max{X1,...,Xi} , (3.8) 

and the c.'s are some constants with 0 £ c. < 1  for  i  £ i < n,  and 
l in 

c = 1. 
n 

Also  invariant are all relative rank rules,   such as 

T(X1 Xn)  = min{i*in:     f    Ift   <x}<k
±> (3-9) 

j=l        j       i 

where the k.'s are some positive integers with k = n. l r ° n 

By (3.4) and (3.5), the risk of any invariant rule is constant, and can 

be written as 

p = /  ... /  I    w<n)(Z)Ir      } TT dz • (3.10) 
0     0 i=l        1 k~;   ; i=l 

The following Proposition can be obtained from a theorem of Kiefer (1957): 

Proposition 3.1.  Let X,,X„,...,X  be IID, each uniformly distributed          1  2     n 

on the interval  (a,a+y) where a is real and y    is positive.  For each 

i = 2,3,...,n,  and 0 £ z. £ 1,  let the loss function w.  (zn,...,z )  be ' i i   1   ' n 

bounded and non-negative. Let T be a stopping rule based on the X.'s 

with T > 2. Finally, choose £ > 0. Then there is an invariant rule T' 

with risk 
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p  t  £ sup p  (a,y) + e • T -oo<a<oo,y>U      x 

This Proposition, proved in Appendix B, immediately yields 

Theorem 3.1.  Under the conditions of Proposition 3.1., if there is a 

best invariant rule in the class of all stopping rules based on X-,,X„,...,X 
-L  z     n 

which always take at least two observations, then it is minimax. 

Following Kiefer (1966) we should re-phrase Proposition 3.1 as:  "For 

stopping rules which take at least two observations, the Hunt-Stein property 

holds."  This is in recognition of the celebrated unpublished theorem of Hunt 

and Stein in the early 1940's which gave conditions under which a best in- 

variant procedure in a hypothesis testing problem must necessarily be minimax. 

3.3.  Pseudo-Invariant Rules and Their Bayes Risks 

Theorem 3.1 begs the question: Is there a best invariant rule and if 

so how do we find it? Within the restricted class of stopping rules Which 

always take at least three observations this question turns out to have an 

easy answer. 

Let Ü    and u be any numbers with £ < u.  If  T  is an invariant rule 

with 3 £ T $ n,  then each of the following stopping rules, 

T-(x,,... ,x  _) - T(Ji,U,X, ,.. . ,x__o/ - 2, 

and 

T2  l'"*"'Xn—?  ~~ ^    »x-i » • • • »xri_9' ~  - 

will be called a pseudo-invariant rule.  The name is inspired by the fact 

that both f  and  T  differ from the invariant X only in that they treat 

the constants & and u as though these were the first two observations; 
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hence T,  and T  are based on only n-2 rather than n actual observa- 

tions.  (Later, when we restrict attention to x's which are symmetric in 

the first two variables, there will be just one pseudo-invariant T corre- 

sponding to  T.) 

We now consider the Bayesian problem with n-2 available observations 

in which a and ß,  the end-points of the underlying uniform distribution, 

are given the particular a priori density 

ir(a,ßk,u) = 2(u-£)/(ß-a)3,     -°°< a<£<u<ß<°°       (3.11) 

(this is (1.1) with k=2) and the loss for accepting the i-th price is taken 

to be either W1+2(£,u,X1,...,X _ ;a,ß-a)  or W " (u,£,X15...,X  ;a,ß-a). 

(The ambiguity here is only temporary.) We use the notation E.   to denote 

expectations taken with respect to the density (3.11).  This particular 

Bayesian problem provides the key to the problem of finding best invariant 

rules because the constant risk of any invariant T £ 3 happens to be just 

the average of the Bayes risks of the corresponding pseudö-invariant T,  and 

T_.  Using the abbreviation 

„       X.,-a     X A-a 

<J6,U,A>  ^3_a' 3_a' ß-a ' ••• ' g_a ) 

we have 

Proposition 3.2.  Under the same conditions as in Proposition 3.1., with 

ß = a + Y>  if T is invariant and x ^ 3,  then for every 1    and u with 

-°° < SL  < u <°°, 
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PT = 2 En v^l       v     v  , (<£,u,X>) _£,u T(£,U,X15...,Xn_ ) 

+ E, , "S » v      y        v«u,ft,X»~j (3.12) J6,u T(U,J(,,X , . .. ,X  „)     - J 

Proof;  Letting z' = (z, z ) we first re-write (3.10) as 

z 

PT =    I    /...//"  dz       y    w(n)(z     z z')I{ , }TT   dz     (3.13) 
T      j=l   0 0    0 X  1=3     X        J     J J 1TCzj'z3-j 'S  >     x}±=2       1 

Next we exploit  the invariance of   x     to write 

^uwxa,u,x15...,xn_2)(<^'P) 

00    Ü    3       3 n n+l n 

/    /    /•••/    I w.(U,u,x»I{x(<£u x>=i}[2(u-«/(ß-a)n+I] (TT  dx.)dadß  (3.14) 
u -oo   a      a i=3 '   '~ i=3 

and make the change of variables 

z1  = (£-a)/(3-a); z„ = (u-a)/(3-a) 

z. = (x.-a)/(3-a), i = 3,...,n. 

n+l 
The Jacobian of this transformation is  (ß—a)  /(u-£)  so the right side of 

(3.14) becomes simply twice the j=l term of the right side of (3.13).  The 

3 = 2    term is derived similarly, n 

(n) Suppose now that none of the losses W.  ,  i ^ 3,  depends on the order 

of the first two observations.  This eliminates the ambiguity in the definition 

of the loss function for the Bayesian problems and simplifies (3.12) for in- 

variant rules which do not depend on the order of the first two observations. 
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It also enables us to ignore all other invariant rules as the following 

proposition shows.  (The proposition is an easy consequence of (3.10) so 

the proof is omitted.) 

Proposition 3.3.  If for each i ^ 3, w.  (z..,z„,—) = w.  (z_,z, , ), 

then, for any invariant x ^ 3,  p ^ min(p ,,p „) where T'  and x" are 

the invariant stopping rules defined by 

T'(z1,z2,...) =  T(max(z1,z2),min(z1,z2),...) 

T"(Z1>Z2, . ..) = x(min(z1,z ),max(z ,z ),.. .) . 

Propositions 3.2 and 3.3 immediately yield: 

Theorem 3.2.  Under the conditions of Propositions 3.1 and 3.3 a suffi- 

cient condition for an invariant stopping rule  x* ^ 3 to be best among all 

invariant rules based on X1,X„,...,X  which always take at least three 

observations is that x* be symmetric in the first two variables and, for 

each £ and u,  the pseudo-invariant rule x defined by x(x ,...,x _) = 

x*(£,u,x1 x __) - 2 be a Bayes rule when there are n-2 available observa- 

tions and the a priori density is given by (3.11). 

(The phrase "...for each I    and u ..." in the theorem can be weakened 

to "...for some i    and u ..." but the stronger version suffices for the 

applications in the next section and is more relevant to the comments which 

follow.) 

To put Theorem 3.2 in proper perspective, we need to introduce the 

"density"  IT (a,ß) = (ß-a)  , -°° < a < ß < <x>.     This is, of course, the 

density of an infinite measure.  That measure is the so-called right in- 

variant measure on the parameter space which is introduced in Appendix B 
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where it plays a key role in the proof of Prosition 3.1.  If we ignore 

the fact that it is an "improper prior" (because it is infinite), imagine 

that X,,X ,...,X  are, conditionally, IID uniform on  (a,ß) with  (a,ß) 

having prior "density" ir«,  and compute formally the posterior density of 

a and ß given X,  and X , we get precisely (3.11) with I    and u 

replaced by min(X1,X„)  and max(X,,X ),  respectively. 

The so-called formal Bayes rule with respect to the improper prior 

density 7T — within the class of stopping rules which always take at 

least three observations — is then the rule which is conditionally Bayes 

with respect to the proper (i.e., probability) densities 7T(a,ß|min(X.. ,X ), 

max(X,,X„).).  Thus what Theorem 3.2 says is that if the formal Bayes rule 

is invariant (and symmetric in the first two observations) then it is best 

invariant among rules x ^ 3.  Similar results for estimation problems are 

discussed in Kiefer (1966). 

3.4.  When to Take Less Than Three Observations 

We need to know when a stopping rule which is best invariant among 

rules which always take at least three observations can be beaten (in the 

minimax sense) by a rule which may take fewer than three observations. A 

satisfactory result is the following: 

Theorem 3.3.  Under the conditions of Propositions 3.1 and 3.3., if 

n = 2 then x= 1 or x = 2 is minimax; if n ^ 3 and there exists a best 

invariant stopping rule x  among rules which always take at least three 

observations, then one of the following five invariant rules is minimax 

among all stopping rules: 
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(a)  T = T* 

(b) T = 1 

(c) T E 2 

(d)  T = 2  if X2 < X 

= T  otherwise 

(e)  T = 2  if X1 < X2 

* 
= T  otherwise, n 

Proof:  There are just two key steps to the proof.  The first is to 

observe that any x    which for some  a and  ß has a non-zero probability 

of taking the first observation — i.e., for which the Lebesgue measure, 

y(«),  of A = {x : x(x,,...) = 1}  is greater than zero — must have a 

maximum risk at least as great as the constant risk of the rule x-, = 1. 

This is obvious if A-  contains an interval, say  (c,d),  since for a = c, 

3 = d,  the rule does always take the first observation.  That it is true 

in general follows from the following measure theoretic result:  If 

u(A) > 0 and if £ < 1,  then there exists a finite interval I such 

that y(Ani) > ey(I)  (see e.g. Halamos (1950), pp. 68).  In other words, 

we can find parameter values a and ß such that P 0(T=1)  is as close 

to one as we like.  Then, from the boundedness of the loss functions {W.  } 
l 

we conclude that E ßW  ((X-a)/(3-a)) will be as close as we like to 
d, P T    ~ 

Ea>3W^
n)((X-a)/(ß-a)) =  pT . 

What we have shown so far is that T- = 1 together with all rules which 

always take at least two observations forms a complete class.  (This completes 

the proof for n=2.)  But Proposition 3.1 implies that we still have a complete 

class if we consider only invariant rules which always take at least two ob- 

servations.  And it is easy to see that all invariant rules x ^ 2 are of the 
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form T E 2;  or  T = 2  if  X < X   T = T' 5 3  otherwise;  or T = 2 

if X > X ,  T = T1 ~Z-  3  otherwise; for some invariant  T' ^ 3. 

The second key step in the proof is to invoke the symmetry of the loss 

in the first two variables in dealing with the latter two cases.  The same 

simple method which yields Proposition 3.3 also shows that we can restrict 

ourselves to those  x'  which are symmetric in the first two variables. 

For such rules, the conditional risk obviously does not depend on whether 

or not  X_ < X .  Hence conditioning on  {T=2},  an event of probability 

1/2, we have 

PT = | (E0 1[w^
n)(X)|x=2] + PT.) (3.15) 

which is clearly minimized by taking T' = T .  D 

3.5.  An Algorithm for Risks of Some Invariant Rules 

In Section 5 we shall want to evaluate the asymptotic risk — in the 

Quantile Problem — of some non-minimax policies of the form (3.6).  Here we 

provide the tools for the evaluation by deriving an algorithm for computing 

the risk of any policy of that form. 

We begin with the following 

Lemma 3.1:  If  T  is of the form (3.6), then, for each  i ^ i , 

T I r    -i  is independent of the pair  (L.,U-). 

Proof:  It is straightforward to check that, regardless of the values 

of  a and Y,  the conditional distribution of the sequence of  (X.-L.)/(U.-L.)'s, 

j = 2,3,...,i,  given L.  and U.,  is that of the sequence of  (Z.-L.)/(U.-L.)'s 

where Z-, ,Z , ...,Z.  is a random permutation of the constants 0 and  1  to- 
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gether with  i-2  IID random variables each uniform on  (0,1),  and 

L.  and U.  are, respectively, the smallest and largest of  {Z ,...,?,.}. 

Since this conditional distribution does not depend on L.  and U.,  the 

result follows immediately.  D 

From the Lemma and the independence of the two vectors  (X ,X ) 
l+l     n 

and  (L., U., I r   . -, ) we have the 
i' i' {x£ I} 

Corollary:  For each i ^ i  the conditional distribution of the pair 

(L.,U.),  given that T > i,  is the same as its unconditional distribution. 

Hence so are the conditional distributions of the vector  (L.,U.,X.,,,...,X ) 
i l l+l     n 

and of 

T(l+1) = min{j 5 1 + 1: (X.-L.)/(U.-L.) <c.} . 
J 3 3     3 3 

To clarify the meaning of T      in this corollary we make the following 

definition: 

If T is of the form (3.6), then for any i with 

i £ i £ n, we denote by x    the policy of the 

same form as  T  except that  i  is replaced by i, 

and by x^   the corresponding pseudo-invariant rule.      (3.16) 

In other words T    is x delayed until i.  And the corollary says that 

the conditional distribution of x given that x ^ i is simply that of x 

Suppose now that the losses do not depend on the past.  That is, for 

each i, 

wjn)((x-a)/y) = wJn)((xi-a)/Y,(x1+1-a)/Y,.-..(xn-a)/Y) •       (3.17) 

Then, by the corollary, for each j > i H 
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E{w^n)((X-a)/Y)Ir _,jT>i} = E wJn)((X-a)/y)I ,       (3.18) 

hence 

E{w(n)((X-a)/y)|T>i} = E w°^   ((X-a)/Y) =  p f      .  .        (3.19) 

If T 5 3, then similar results hold for T,  the pseudo-invariant policy 

corresponding to T  in the Bayesian problem.  Using (1.2) with the prior 

density (3,11) we can verify immediately that the conditional distribution of 

~(i+l)      r~      i X given X-,...,X    is identically that of x      on IT > i-2} for each 

i 5 i ,  and that, for losses satisfying (3.17), for each j > i ^ i 

E{wfn)(<S.,u,X>)I,~   JX  X 9}=Ew^
n)«£,u,X»I ^ on {x> 1-2} 

3 ~       \T-3~JL;    i     i-/    j       ~  {T^
1+1''=:^_2} 

So, corresponding to (3.18) and (3.19) we have for each j > i ^ i 

E{w^n)«£,u,X>)Ir~   9>|x>i-2}=Ew^
n)«£,u,X»I f       . (3.20) 3 ~   IT-j-ZJ- 3 ~  |~ (i+I)=  2-j. 

and 

£{w^«£,u,X»|T>i-2} =Ewi^+1)«£,u,X» . (3.21) 

Now Proposition 3-2 establishes the equality of the right sides of (3.19) 

and (3.21); and the proof of that proposition shows clearly that it holds 

"term-by-term" (i.e., for each i) so the right sides of (3.18) and (3.20) 

are equal.  Thus, given X ^ 3  satisfying (3.6) and losses satisfying (3.17), 

if we define 

<P±  = E(wT((X-a)/Y)|x>i),  i = in-l,in,...,n-l (3.22) 

and 

*± = E(w~+2«£,u,X»|x>i-2),  i = in-l,in,...,n-l 
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we have not only equality of <p.     and </>.  for each i,  but also equality 

of the coefficients used to compute them from the following identities: 

*±-l = E[w1((X-ct)/y)I^T=:L] |T> i-1] + <^iP(T> i|x> i-1) 

= E[w ((X-oO/Y)I m  ] + </>.P(T(l)>i) C 
1  ~       {TU; = i} 

and 

£.. = ...=• E[w «£,u,X>)I        ] + v,P(T(x)>i-2) 

So there is a choice of methods of evaluating (3.23).  Either is straight- 

forward as soon as we note that because 0 £ c. < 1 for each i < n, we can 

replace (3.6) by 

T(X) = min{j ^ i : (X.-L. _)/(U. .-L. _)^c.} 
n   j  j-1   j-1 j-1'  j 

= n if no such j < n, 

the advantage being that X.  is independent of L. 1  and U._,.  This implies 

that 

T(X) =min{j.in-2: (X.-£.+1)/(Uj+1-£.+1) * c.+  } 

= n-2  if no such j < n-2, 

where, for i ^ 3, 

L. = min{£,u,X,,...,X. „} (3.24) 

and 

U. = max{£,u,X1,...,X._2} . (3.25) 

We have then, by direct calculation, 
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,(i> P(TV ' > 1) = P(X.>L. _+e.(Ü. ,-L. .)) i  l-l  i l-l i-1 ' 

p(~(i)>i.2J=?Cx_2>L._1+ci(Gi_1-L._1)) 

= [ (i-1) - (1-2)0^/1,  1= in,in+l,...,n-l 

and in the special case of the Qüantile Problem, 

E 

= E 

w  ((X-a)/y)I     m 

w.(<£,u,X>)i 
L1       ~   {^Ki.2y 

=  E 

=  E 

-x.-a 
l 

rxi-2-^ 
ß-a 

1  T 
3-a {X. £ L . . + c . (U . , -L . ., ) } 

l   l-l   l  l-l  l-l -J 

ß-a ^.^V^c.CU.^-L.^)} 

and 

[i + (i-2)Ci + | (i-l)(i-2)c^]/i(i+l),  i=in,in+1,...,n-l 

Vi - ^V0^ -1 

Substituting back into the right side of (3.23) yields the following 

algorithm for the risk: 

Proposition 3.4:  In the Quantile Problem, if x is of the form (3.6), 

then its risk,  p.,  equals <£. _1 , where 

1 
Vl = 2 
Vl = Il+(I-2)G1+i (i-l)(i-2)cj]/i(i+l)+^i[ (i-l)-(i-2)C;L]/i, 

i=tt-l,n-2,...,i .   (3.26) n 
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4. MINIMAX RULES 

Now we specialize to the Best Choice and Quantile Problems for which, 

as previously noted, the conditions of Propositions 3.1 and 3.3 are satisfied; 

so Theorems 3.1, 3.2, and 3.3 are at our disposal. 

When k=2 in (1.1) — so the a priori density is given by (3.11) — 

Stewart's (1978) results are as follows: 

In the Best Choice Problem the Bayes rule with n - 2 available observa- 

tions is 

T = min{i£max{i(n) - 2,1}: X. = min{£,X.,...,X.}} 

= n-2 if no such i < n-2 (4.1) 

where i(n)  satisfies (2.12). 

In the Quantile Problem the Bayes rule with n-2 available observations 

is 

Tn = minU* i(n) -2: ^-^/(Ü^-L^) * c.+2(n)}        (4.2) 

where L.  and U.  are given by (3.24) and (3.25), respectively, and the 

c.(n)'s and i(n)  satisfy (writing c.  for c.(n)): 

c = 1 
n 

Ci-1 = ci(
1-c1/

2) " (i+ir^U-ei) - (i-2)"1(i+l)~1(l-c1)       (4.3) 

and 

n - i(n) = min{j $ n - 3: c  . - (n) < 0} 
n-j -1 

= n-3 if no such j . (4.4) 
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The invariant rules corresponding tp these Bayes rules are of the form 

(3.6), and those for the Best Choice Problem are also of the form (3.9) with 

k. El for i < n.  Thus in the Best Choice Problem the T  in Theorem 
l n 

3.3 is a rule based only on relative ranks.  Hence so are all five of the 

rules there.  We therefore have 

Theorem 4.1:  In the Best Choice Problem, the best stopping rule based 

only on relative ranks is minimax. 

From (2.12) it is easy to check that in the Best Choice Problem 

i(2) = 1, i(3) = i(4) = 2 and i(n) > 3 for n > 5. 

In the Quantile Problem the risks of the five stopping rules in Theorem 

3.3 are p ft, 1/2, 1/2, j  (1/3 + p ft),  and   2"(2/3 + p ft) ,  respectively. 
Tn Tn Tn 

(This follows from invariance plus the fact that if Z  and Z  are IID 

uniform on  (0,1),  then EZ = EZ = 1/2, E(Z2|Z <Z ) = 1/3,  and 

E(Z_|Zn>Zn) = 2/3.)  Since p .  must be less than 1/2  (the risk of the 
Z' I 1 T* n 

rule T = 3) only the first and fourth of these five stopping rules are 

admissible.  Now p   is decreasing in n simply because the class 
Tn 

ix: 3 £ T $ n}  is increasing in n.  Thus the minimax stopping rule will 

be completely determined as soon as we find the smallest n for which 

P.* * !/3- 

This is easily obtained using the fact that, by Theorem 3.2, p Ä is 

Tn 

also the Bayes risk of its pseudo-invariant counterpart T  given by (4.2). 

That is, for each n ^ 3, 

P * = b „ (4.5) 
'T*   n-2 n 

and 

mn = min{bn_2, f < f + bn-2) } (4'6) 
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where 

b = minimum Bayes risk in Quantile Problem 

with n available observations and 

a priori density given by (3.11) (4.7) 

and 

m = minimax risk in Quantile Problem with 
n 

n available observations. (4.8) 

Stewart's proof, based on backward induction, provides what we need. Let 

^n) = inf{T:i_2<^n_2}E[(XT-a)/(ß-a)|X1,...,Xi_2],   i = 2,3,...,n-l (4.9) 

so 

^n) = v2 • <4-10> 

As Stewart showed, the ^.  's and the c.(n)'s are related by 

i|^n) = (i+1) -1  {(i-l)c.(n)+ 1}   i(n)-l £ i £ n - 1 (4.11) 

and 

^(n)  ^(n)        ^(n) ,, u) 

[PUT TABLE 1 HERE] 

Table 1 uses (4.3), (4.6), (4.10), and (4.11) to get the explicit solution 

to the Quantile Problem for n $ 6.  We can see from the table that the smallest 

n for which p . = b „ £ 1/3 is n = 6.  With these numerical results we can 
T*   n-2 
n 

now state 

Theorem 4.2:  In the Quantile Problem, for all n ^ 6, m = b 0 and 
  n   n— 2. 

the minimax stopping rule based on n available observations is 

xn = min{i >,  i(n): (X±-L1)/(U1-L±) £ c±(n)} 
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where    L.   = inIn{Xn,...>X.},     U,   = max{X1,...,X.} and  the     c.(n)'s     and 
l                  lii                  1              l l 

i(n)     are given by   (4.3)  and   (4.4),  respectively.     For    n =  3,   4,   or  5, 

the minimax rule is    T =  2    or    T      according as X„  < X,     or    XA  > X. . n ° 2 1 2 1 

And  for    n = 2j  T = 1    is minimax. 
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5. ASYMPTOTIC MINIMAX RISKS 

Since the minimax rule in the Best Choice Problem is just the best 

relative rank rule, its asymptotic risk is 1 - e  ~ .6321,  from (2.13). 

(This limit should be compared with the value ^ 1 - .5802 = .4198 from (2.9) 

which is the asymptotic risk when the distribution is known.) 

For the Quantile Problem, we shall prove the following theorem: 

Theorem 5.1:  lim    nm = (3 + 2/T) /v     ~  3.4780. 
      n->oo  n 

(This limit should be compared with lim    nv = 2 and lim    nr ~ 3.8695, 
n->oon n->oon 

from (2.3) and (2.11), which are the asymptotic risks when the distri- 

bution is known, and when the best relative rank rule is used, respectively.) 

5.1.  Preliminary Results 

We collect here results which will be needed for the proofs of Theorems 

5.1 and 6.1. 

( r> \ 
Taking \p        = n/(n+l)  for convenience, and re-writing (4.11) as 

Ci(n) = (i-1)"1 {(i+l)^n)-l},   i(n)-l £ i £ n (5.1) 

we can then re-write  (4.3)   in either of  the following forms: 

, (n) 1 i/i 1        \ . (n)     1   ft 2        w,(n)\ •/   x     • /r  ON 
»1-1 =  2(i-l)(i+l) + (1-i(i^iy )*i     -zV-lU^nWi    >•     i(n)<i<n  (5.2) 

or 

,(n)      .(n) (i-2)(i+l)   f,,(n)       1 N,,(n) , i v1        .,  .        . ,c  ,. 
*i     -»1-1 21(1-1)      «»1     -±»)tol     +(i-2)(i+l))}'     i(n)^Kn     (5.3) 

Also (4.4) becomes 
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n-i(n) = min{j £ n-3: ^)n_._1 <   (n-j)  } 

= n-3  if no such j . (5.4) 

From (5.2)-(5,4) we can show that 

*<"> " ^iCn)-!^ 

= [m-1]  for n 5 6 . (5.5) 
n 

(Here  [x]  denotes the integer part of x.) Hence i(n)  is non-decreasing 

in n,  a fact which can be strengthened as follows:  Since the right side of 

(4.3) is increasing in both i and c.  it follows that 

c _.(n) /  in n for each j = l,2,...  and n 5 i(n)+j .     (5.6) 

Combining this with (4.4) we conclude that  i(n+l) £ i(n)+l.  Thus, for each 

n, 

i(n+l) = i(n)  or i(n) + l. (5.7) 

We also need to know that 

t < 1 => sup sup.    nil.       <  oo. (5.8) 
*n  *i £ nt rx 

Here a probabilistic argument is simpler than an analytic one.  Using (2.11) 

and the fact that ty. is no greater than the risk of any rule which totally 

ignores the first n-i observations, we have 

(n-i)i^n) £ (n-i)m  . < (n-i)r  . < 4 
l n-x       n-i 

for which (5.8) follows immediately. 
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5.2.  Proof of Theorem 5.1 

o 
By (5.8) we can multiply both sides of (5.3) by n ,  let n •> «>, and 

conclude that for i > i(n) 

i/n -> t => n^n) +.f(t) (5.9) 

where f satisfies the Riccati equation 

f'(t) = (l/2)(f2(t)-t2) (5.10) 

on  (0,1) with the boundary condition f(1 ) = oo. And from (5.5) we can also 

conclude that 

i(n)/n + t* (5.11) 

and 

nm -* f (t*) , (5.12) 

t* being the t for which f(t)  is minimized and where f(t) = t 

The change of variables 

f(t) = -2g'(t)/g(t) (5.13) 

in (5.10) yields the linear equation 

4t2g"(t) = g(t) 

which has the general solution 

g(t)=at
(1 + /I)/2-bt(1-/2^/2. 

The boundary condition f(l) = °° implies a = b which uniquely determines f, 
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The result, from (5.13), is 

f(t) = (l + /2-)(3-2^2 + t
/2) (5U) 

t(l-t:  ) 

which attains its minimum at 

t* = (3-2/2)1//2 = 1/(3 + 2/2)1,/2_ = Vf(t*) ~ .2875. 

Applying (5.12) completes the proof.  D 

From (5.1), (5.9), and (5.14) we obtain the 

Corollary;  If  i/n -> t > t*,  then 

(n-i)c.(n) -> (l-t)(f(t)-t^) - (2+/2)d-t)(/2"-(3-2/2))i      (5>l5) 
td-t''2) 

The right side of (5.15) increases to 2 as t  increases to 1.  Table 2 

gives some values. 

[PUT TABLE 2 HERE] 

5.3.  A Simplified Sequence of Policies 

The corollary to Theorem 5.1 shows that when n is large the minimax 

policy is to let approximately t*n (~ .2875n) observations go by, then stop 

as soon as 
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(XjL-Li)/(Ui-Li) <; an((n-i)/n)/(n-i) (5.16) 

4 

t increases from t* to 1.  Not surprisingly, this is similar to what 

where a (t)  is approximately the right side of (5.15), so a (t) / 2 as 
n n 

happens when the distribution is known.  By (2.3) v  .  is approximately 
n—l 

2/(n-i)  for large n.  Indeed it can easily be checked that replacing the 

right side of (2.1) by 2/(n-i)  does not increase the asymptotic risk.  It 

is therefore of interest to see what happens if we correspondingly alter the 

minimax policies by replacing c.(n) by 2/(n-i) and i(n) by a free 

variable chosen so as to minimize the risk. 

Substituting c. = 2(n-i)   into (3.24), writing <p. for <p., and 

re-arranging terms, we can show that if i/n -> t as n -> <»,  then 

n^n) + f (t) when 

1+t      ,rt^ 1+t2 

f?(t) =HStT (f(t) --^T~)> tu Z) td-t2) 

2 
and f satisfies the boundary condition  (1-t) f(t) -> 0 as t -*• 1.  The 

unique solution is 

f(t)  =   a-t2)+2t>nt|   m (5<17) 

2t(i-tr 

Thus if we take i /n -»• t,  the risk is asymptotically n f(t).  The best 

choice of t  is the one for which f(t)  is minimized.  By numerically 
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evaluating f we find that its minimum value is about 3.8215, attained at 

t = .3225. 

Comparing this value of 3.8215 with the corresponding values of 3.4780 

for the minimax policies and 3.8695 for the best relative rank rules, we see 

that replacing c.(n)  by 2(n-i)   yields policies which are sub-optimal 

but still manage to outperform the best relative rank rules by a whisker. 



35 

6. MONOTONICITY PROPERTIES OF THE MINIMAL RISK 

(This section is devoted entirely to the Quantile Problem.) 

All of the minimal risk sequences which have been introduced — v 
n 

and r  in Section 2 and m  and b  in Section 4 — are decreasing n n       n 6 

in n simply because the bigger n is the larger is the class of 

available stopping rules.  Multiplying the minimal risk by n,  however, 

produces an increasing sequence.  This was in effect shown for nr  by 

Chow et al. (1964), as noted in (2.11).  The method used there was to 

condition on the arrival time of the worst of n+1 arrivals, which leads 

to a randomized relative-rank-based rule for n arrivals such that — in 

the notation of this paper — (n+1) times its risk is less than  (n+2)r +1. 

It is quite easy to show that 

nv t in n, (6.1) n 

and two proofs will be given in Section 6.1:  a purely analytic one and one 

using the method of Chow et al.  The latter proof will then be generalized 

in Section 6.2 to yield the main result of this section: 

Theorem 6.1: nm /in n.      n 

(We should remark that nb  is also increasing in n since b = m , „ n n  n+2 

for n ^ 4 and monotonicity for smaller n can be checked using Table 1.) 

6.1.  Monotonicity of nv 

The analytic proof starts with the recursion (2.2).  (Note that if we 

let R = 1-v  in (2.2), then n      n 

Ritfl-I(1+Rn)j Ri=i 
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which is Gilbert and Mosteller's formula (5a-l).)  Now x(l-x/2)  is 

increasing on  (0,1)  so 

2    _ .     2     , 1_>. 2n        .2 
v    £ -—r =* v   .,   £ —TT U rrJ =  „ £ n "  n+1 n+1  "  n+1   v n+1 '       , xn2 v  n+2 (n+1) 

Since v, $ 2/(1+1)  we have by induction 

2 v £ —— for all n; n  n+1 

hence, from (2.2) again, 

v^ * v (1 --£=-) (6.2) n+1 - nv   n+1 

which is (6.1).  n 

For the second proof we first take a=0,  3=1,  purely for notational 

convenience.  Now suppose we are told both the value,  U .,  and the arrival 

time of the maximum (i.e., worst) of X,,...,X ,.  Then clearly we can 

improve on v    by using an optimal policy on the other n X.'s, which 

are conditionally IID, uniform on  (0,U .-,) •  The optimal risk is then 

conditionally v U.,,;  hence unconditionally v E U ,.. = v (n+1)/(n+2). n n+1 J       n   n+1   n     v 

Thus, 

n+1 
n+T Vn * Vn+1 

which is slightly stronger than (6.2).  D 

6.2 Monotonicity of  nm 
 • - • ••    n 

Now let us "tie one hand behind our back" by insisting that only in- 

variant rules be allowed on the other n X's.  It is not hard to see that 

the best such rule does not depend on U ,.,  and its conditional risk is 
n+1 
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just m U ,,.  But the very fact that the rule does not depend on U J     n n+1 J    v n+1 

prevents us from asserting at once that it is an improvement on m 
n+1 

(If so, then we are done, as before.)  Here is where the work begins. 

First we check directly from Table 1 that nm  is increasing for 

n $ 6.  So henceforth we will take n ^ 6.  Since the minimax rules have 

constant risk we can simplify the notation by taking a= 0, 3=1.  Let us 

also abbreviate T ,,  the minimax rule with n+1 observations, by 

simply T. 

Now we define the random variable Z by X„ = U ,,,  and let J       Z   n+1 

U± = U± if i < z 

= max{X.: j £ i, j ± Z}  if i £ Z. 

Then, noting that x = Z only if Z = n+1,  we let 

CT= TI
{T<Z} 

+nI{T=Z=n+l} + aZI{x> Z;   Z<n} 

where for    1 $ z  £ n, 

Oz = min{i>max{z,i(n)}:   (x-L~Li_i)/(u
i_i~L

i_i)   * ci_i(n)} • 

Thus, on {T > Z; Z £ n},  a is essentially the minimax rule with n 

observations except that it ignores X  entirely and treats X   X , 

as though they were X„,...,X .  Conditional on U ,,, a    is in effect a 
Z     n n+1 

randomized invariant rule applied to n IID random variables, uniform 

on  (0,U in).  Hence n+1 

E(X |U ..) =mU .. 
a' n+1     n+1 



38 

where the constant m is at least as large as m .  Thus 
n 

EX„ 5 m EU J_.   = m   (n+l)/(n+2) . 
a        n    n+1        n 

Since    EX    = m   ,n     we see  that   to  prove Theorem 6.1  it  suffices  to  show 
T        n+1 

that 

EX    £ EX   . 
O T 

Clearly 

V{T<Z} " V{T<Z} 

and,   letting    A =   {T = Z = n+l}, 

X I.   = X I.   < X _,.!.   = X I. a A n A n+1 A T A 

So,  what  remains  to be shown is 

EX If   , „    „       ,   £ EX If       „     „       , . (6.3) 
a  {x>Z,   Zsjn} T  {T>Z,   Z^n} ' 

We do so by showing  that  the corresponding  inequality holds  identically on 

{Z £ n}     for the conditional expectations given    Z    and    U    . .     And,   to 

simplify matters,  we divide both conditional  expectations by    U    1     which 

eliminates  the dependence on    U    ...     Specifically  (6.3)   is  implied by 

E(XaU^I{T> z}|z,Utt+1)   < E(XTU^1I{T> z}|Z,Un+1} 

identically on  {Z £ n} (6.4) 

where both  sides of   (6.4)   are  functions of     Z    only. 



39 

We can describe these two functions of Z as follows: Let 

Y..,Y„,...,Y  be IID random variables, each uniform on  (0,1); let  L. 

i 

and U.  be the smallest and largest, respectively of Y, Y ; also 

define 

V. = L.' , + c.(n)(U,'  -L.' _) 1    x-1    1     1-1  1-1' 

and 

< - Li-i + W**1'(1-L,i-i> • 

For each z £ n let 

a(z) = min{i ^ max{z,i(n)}: Y. £ V.} 

and 

T(Z) = min{i £ max{z,i(n+l)-l}: Y. £ V.} 

Then, on {Z=z},  the left and right sides of (6.4) are EY , ,  and EY ,  N cr(z)        T(Z) 

respectively. 

Now we are in a position to establish (6.4) by backward induction.  Let 

Then 

i>±  = Vz) = E(Ya(z)la(z) > !) 

6. = 6.(z) = E(YT(Z)|T(Z) > i) 

Vl = «n-1 = \ (6-5) 

and 

Wz) =EYa(z);   6z-l(z) =EYx(z)- (6'6) 

Moreover 
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$•_!   = ^-_i     i^    max{z,i(n)}•£  i £ n - 1 

= 4>    ±    if    z £  i <  i(n) , (6.7) 

where    if; . is defined by  (4.9);   also 

6.   n   = EY.Ir„       TT  ,  + 6.P(Y.>V.)     if    max{z,i(n+l)-l}  £  i jc n-1 
l-l l   {Y.£V.} 11       l 

l       l 

= 6     . if     z  <c  i <  i(n+l) - 1 . (6.8) z-1 

By (6.6) the proof will be complete when we show that 

6. 5: ip.     for i = n-l,n-2,. .. ,z-l . (6.9) 

Equality holds for i = n-1 by (6.5) so we can proceed by induction.  First 

we need to evaluate (6.8).  Independence of Y.  and V.,  together with the 

moments EL. , = i ,E(L. J =2i  (i+1)  ,  gives l-l        l-l 

6i-l - \  EV12 + «i«1^) 

l+(i-l)c   (n+i)+-i i(i-l)(c,,1(n+l))
2 

-       i(i+l) 
+ U-c1+1Cn*l))(^) 6± 

if max{z,i(n+l)-l} £ i £ n-1 

= 6  1  if z £ i £ i £ i(n+l) - 1. 
z-1 

For  0 < c,x £ 1,  let 
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1+ (i-l)c+-| i(i-l)c2 

dH(c'x) = nisi) + (1_c) ~r x 

1+ (i-2)c + | (i-l)(i-2)c2 

8i-l(c'x)  =  1(1+1) + 
pizi^a -2)c 

x 

Then 

6±_1 = di_1(ci+1(n+l),6i)     if    max{z,i(n+l) - 1}  U^ n-1 

and,  by  (3.26)   and   (6.7), 

4>i_1 = gi_1(ci(n),$i)     if    max{z,i(n)}  $ i $ n-1, 

Also,  by direct  calculation, 

di_1(c,x)   - g1_1(c,x) i-1 
i(i+D (c  - 

(i+l)x - 1 
i-1 ). (6.10) 

which  is clearly non-negative if and only  if     c  ^   [(i+l)x - l]/(i-l). 

We now assert that, for    i 3*  max{z,i(n+l) -1},     6.   ^ $.     implies 

6i-l  * di_1(ci+1(n+l),^i)   ^  gi_1(ci+1(n+l),$i)   ^ ^±_± (6.11) 

The first inequality holds by the induction hypothesis because d._1  is in- 

creasing in x.  The second inequality holds by (6.10), (5.1), and (5.6) if 

i ^ i(n); but by (5.7) the only remaining case is z $ i(n) = i(n+l); 

i = i(n+l) - 1,  in which case the inequality holds by just (6.10) because 

then  [(i+l)$. - l]/(i-l) < 0.  Finally the last inequality of (6.11) holds 

because 
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min 0«cSl 8i-l(c'V - *i-l      if i  >  iW 

/\ /\ 
> i|j. = ik .  if  i = i(n) -1 

Thus (6.11) shows that 6. ä $.  where 
3   J 

j = max{z,i(n+l) - 1} £ max{z;i(n)} . 

Referring to (6.7) and (6.8) we see that 6 ., = 6.  and U> , = iii.. 
z-1   3 Tz-1  rj 

(6.9) holds and the proof of Theorem 6.1 is complete.  D 

Thus 
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APPENDIX A 

Derivation of (2.10):  Without loss of generality we may assume that the 

underlying distribution is uniform on (0,1); and for compatibility with the 

work of others we shall pose the equivalent problem of maximizing the probabi- 

lity of selecting the largest of X-,,X„,...,X .  So the optimal policy is to 

stop as soon as X. = max(X, ,X,,,.. . ,X.)  and X. >  1 - d  . where dn = 1 r x       1 2 x        x       n-x 0 

and, for i < n, d  .  is defined by (2.5).  For convenience we let ' '  n-x J 

and 
M, = max(X, ,. . . ,X, ) . 

It should be noted that Gilbert and Mosteller's argument for the 

optimality of this policy was heuristic.  A rigorous argument can be con- 

structed either by dynamic programming or by a Markov chain agrument. The 

latter is provided by Bojdecki (1978) who, in effect, uses the easily-verifiable 

identity 

i  (j)(l-x)j    i  .-j,, 
I    J 3  = I     (X • 1} (A.l) 

j=l   jxJ     j=l    J 

to re-write (2.5). 

We now let X,,X„,...  be an infinite sequence of IID random variables 

each uniform on (0,1),  let 

T = min{i: X. = M. ^ b  .} , 
n xx   n-i 

so T  is the optimal policy based on n prices, and let a      and a      be 

defined by 
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X  = M  and X T = M 
an      a   a -1 n n    n 

so a  is the "arrival time" of the largest of the first n prices and 
n 

a  is the arrival time of the largest price prior to the a -th.  Then, 

because b  . V  in i while M. /  in  i,  we can write 
n-i 1 l 

P(X  = M ) = P(M > b     and M  . < b   ') (A.2) v T    n      n   n-ü       o -1        n-a n n        n        n 

Now we make the change of variables: 

Z = n(l-M );    T = a /n n       n      n   n 

Z' = (a - 1)(1 - M   /M );   T' = a'/(a -1) n    n       a —± n      n   n  n 
n 

and use (2.6)   so that   (A.2)  becomes 

where 

P(X      = M )   = P(A    n B  ) (A,3) T n n        n n 

A    =  JZ  (l-T   +n    c   ,1   _  .)  < c  ,T   „ A n       l  nv n n(l-T )y n(l-T )J 

n n 

and,   letting 

K    = n(l- T T*)   + T   , n n n n 

-1 
B    =   {cv    <[Z+(T--)      (1-n  XZ  )Z'][1-T T'+n 1(c^   +T')]} . 

n        LK nnn nnJ nn K nJ 

n n 

Using familiar properties of the uniform distribution, one can verify 

the weak convergence result 
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(Z ,z',T ,T')-+ (Z,Z\T,T') 
n n n n 

where Z, Z', T,  and T'  are as described following (2.10).  This in turn 

implies that (A. 3) converges to (2.10) as n ->• °°. 

To get from (2.10) to (2.9) we first condition on Z = z,T = t,  and 

T = t';  the conditional probability is 

-t(c/(l-tt*)-Z)+ _ 
e i{z<c/(l-t)} * 

Integrating this multiplied by the exponential density of Z yields the 

conditional probability given T = t and T = t' which is 

(l-t)"1 e"ct/(1~tt,)(i-e"c(1~t:)/(1"tt,)) + e"c/(1",:t,)-e"c/(1~t) 

The final step of integrating this expression over the unit square requires 

the change of variables 

u = (i-t)/(i-tt')s     v = l/a-tt') 

on all but the last term.  This, with the help of (2.8) and the identity 

1 °° 
/ u-V11-!) = I ck/klk 

k=l 

yields the expression 

r°   r      -2,       .-1 -c(v-u), , 
J )    v  (v-u)  e      dudv 
0 0 

Letting w = v-u and interchanging the order of integration then leads 

directly to (2.9) which can easily be numerically evaluated from the identity 
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oo       __i CO 

/     x       e"CXdx =   | log  c|   - Y  -    I     (-c)j/j.'j 
1 j=l 

where y     is Euler's constant = .577216. 
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APPENDIX B 

Proof of Proposition 3.1;  (This proof is nothing but Kiefer's proof 

(1957; p. 588-589) of a much more general theorem, written out in longhand 

for this special case, and deleting those aspects of the general proof which 

become extraneous in this case.  The proof uses the notation introduced in 

Section 3.) 

The key step in the proof is this:  Given any stopping rule T ^ 2, 

we use it to define a large collection of corresponding invariant rules as 

follows:  For each real a and positive y    let x    be the stopping rule: 

T  (x) = x(a+ y(x-x,)/ |x9-x, I) 
»Y 

(Note that if  {x: T(X) = 1} were non-empty, then T  (X) would fail to be 
a,y ~ 

a stopping rule.) 

If we now let 0 -  R x R  denote the parameter space and y be any 

probability measure on Borel sets of 0, then — simply because a maximum is 

at least as large as an average, which in turn is at least as large as a 

minimum — we have 

sup Q p (a,y) £ / P (a,Y)y(da>dy) (B.l) 

and 

^ P%,Yy(da'dY) * ±nf0 P%>Y' (B'2) 

Hence, if we could find a y for which the right side of (B.l) is equal to the 

left side of (B.2), the proof would be complete.  This is not unreasonable to 

hope for, because, as will be seen below, the requirement is that y be right 

invariant, i.e., that for each G C 0 and  (a»Y) e ©/ y(G ° (a»Y)) = y(G)> 

where 
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(a*,Y') ° (a,y) = (a'+ OY'IY'Y) (
B
-
3
> 

and 

G o (ct,Y) = {(O'.Y') o (a,Y)= (a',Y*)GG}. (B.4) 

A right invariant measure does indeed exist, but it is, unfortunately, 

necessarily an infinite measure; e.g., 7rn(da,dY) = Y dadY is one such, 

as can easily be checked (see Zacks (1971), pp. 334-335).  Hence we must resort 

to showing that 

where 

lül
t + JjPTW " PTa,Y

)7V(da'dY>  = ° ' (B'5) 

m      U  m  U m 

and the G 's are successively larger subsets of 0 with finite 7Tn measure. 

Let<&r  = rO,l"|n and, for each z e<W , let n      J ~   n 

G±(z) = {(a,Y) G 6: x(a + yz)   =   1} ; (B.6) 

so G (z),G„(z),...,G (z)  is a  measurable partition of © .  It follows from 

(B.3) and (B.4) that for any  (a,b) G 6, 

G±(z) o (a,b) = {(a,Y) 6 0: x(a + y{z-a.)/b)  = 1} .        (B.7) 

Now,  using the right  side of   (3.4), then interchanging the order of 

integration,  the right  side of   (B.l)  becomes 

n n 
/    y(da,dY)  /         I    w±^nr       (         )=±}dz =    I    j      w  (z)y(G  (z))dz.    (B.8) 
0 <%l     i=2 xz.jwrjzj   is ±=2  W 

n n 



49 

And, from (3.10) — with  T = T   — followed by an Interchange of the 

order of integration and (B.7), the left side of (B.2) becomes 

J0 y(da'dY) 4f J2
Wi(5)I{^T(a+Y(rZl)/|z2-Zl|)=i}

d5 
n 

I    /   w (z)y{G (z) o (z  |z-z |)}dz. (B.9) 
1=2 ^   i ~   X~     1^1 

n 

Comparing (B.8) and (B.9) we see that right invariance of y does indeed 

imply equality of the right side of (B.l) and the left side of (B.2).  Take 

]i = ir  = Y dady,  and 

G = {(a,y) e 0: IotI £ A , 0 < b S Y <  B < °°} m ' '   m'        m      m 

where    A    / °°,  b    i 0,  E    f °°    and    B  /in B    =  o(A ) .      Define   TT       by mm"'m m m vm m       J 

m 0      m      0    m 

Then,   from  (B.8)  and  (B.9), 

f   |pT(a,Y)  -  PT• vK   (da,dy) 
0 

V«,   „ HTajYl m 

n 
=     I     /      w.(z) k{G ,(z)-u   fc.(z)    °   (Zl,|z  -z J)}|dz . (B.10.) 

1=2   ^ n 

Now,   denoting     (z   , |z„-z,|)     by    g(z),     we have 

TT0({G.(Z)   o  g(z)} n Gm)  = 7r0(Gi(z)Gm .  g(z)) 

+ ^({(G^z) -Gm)   o  g(z)} n Gm) 

VGi(z)Gm   °   g(5}   - V (B-U) 
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I 
i=2 

|w  (.)|| 
wn 
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The first term on the right side of (B.ll) equals irn(G.(z)G )  because 

7T-  is invariant.  The second and third terms are at most 

V{5m ° g(z)} n Gm> = VGm " Gm ° g(5»>  and  irQ(<
G,n ° g(~z)} " V 

respectively.  Thus the right side of (B.10) is at most 

U m 

where ||w.(OII = sup„  w.(z)  which is finite by assumption.  So to 

establish (B.5) all we need to show is that, for each z G <H/      with 
n 

lz2_zll > °' 

^0(Gm
A{Gm°g^)})   n —vv—* 0 m 

Using (B.3) with  (a,y) = (zi>IZO~ZTI)  we can verify that 

GmA{Gm ° g(?)} C {lal * V bm < ^ V I Z2~Z11 } 

U 

{|a - AJ   <   |Z]L|Y,  bm^ Y< Bm} 

u 

{|a + Am|   <   Izjy,  bm^ Y < Bm} 

U 

{- Ain-zlY^a<Am-z1Y,   Bm^T<Bm/l^2-
Zll} 

Hence 

VGmA<Gm •*<£>»        2A• ^|z2-z1||+4|z1|(Bm-bin)   + 2AjÄn|z2  -  Z;L 

IT^(G  ) " 2A     £n(B  /b  ) 0    m m m    nr 
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which goes to zero provided B /£n B = °(A ). ° m    m     m 

Thus (B.5) holds, which completes the proof of the proposition. 

The author is grateful to James Berger, Jack Kiefer, Herman Rubin, 

and the referees for their helpful suggestions and to the Stanford 

University Department of Statistics for its hospitality during the 

preparation of this paper. 
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2.  Asymptotic Form of Minimax Rule in Quantile Problem 

t lim n(l-t)cr  ,(n) |nt [ 

288 .0041 

289 .0127 

29 .0212 

30 .1035 

40 .7199 

50 1.1128 

60 1.3894 

70 1.5967 

80 1.7593 

90 1.8908 

95 1.9478 

99 1.9899 

995 1.9950 

999 1.9990 



5 s 

1.  Solution to Quantile Problem for n = 3, 4, 5, and 6 

n 

c5(n) 

4>5 (n) 

1.0000 .5000 

.5000 

c4(n) 1.0000 .5000 

.5000 

.3056 

3833 

c3(n) 

^3(n) 

1.0000 .5000 

.5000 

.2750 

.3875 

.1470 

.3235 

c2(n) 

Vn) = bn-2 

.5000 

.5000 

.1875 

.3958 

.0609 

.3354 

.1084 

.2972 

m .4167 .3646 .3344 .2972 
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